Parse ATOM FPDS urls
parse_fpds_atom_urls(
urls = NULL,
use_future = F,
clean_entity_column = F,
unformat = T,
keep_key_columns = F,
exclude_bloat = T,
clean_address = T,
snake_names = F,
show_progress = T,
return_message = T
)
vector of fpds URLS
if TRUE
cleans entity columns
if TRUE
unformats formattable columns
if TRUE
returns only key columns
if TRUE
return a message
tibble
# library(govtrackR)
# library(tidyverse)
# library(future)
# library(asbviz)
# c(
# "https://www.fpds.gov/ezsearch/FEEDS/ATOM?FEEDNAME=PUBLIC&q=GLOBAL_VENDOR_NAME:PALANTIR%20TECHNOLOGIES%20SIGNED_DATE:[2019/01/01,2019/04/08]&sortBy=SIGNED_DATE&desc=Y&start=0&sortBy=SIGNED_DATE",
# "https://www.fpds.gov/ezsearch/FEEDS/ATOM?FEEDNAME=PUBLIC&q=GLOBAL_VENDOR_NAME:PALANTIR%20TECHNOLOGIES%20SIGNED_DATE:[2019/01/01,2019/04/08]&sortBy=SIGNED_DATE&desc=Y&start=10&sortBy=SIGNED_DATE"
# ) -> urls
# parse_fpds_atom_urls(
# urls,
# use_future = T
# )
#
# parse_fpds_atom_urls(
# c(
# "https://www.fpds.gov/ezsearch/FEEDS/ATOM?FEEDNAME=PUBLIC&q=GLOBAL_VENDOR_NAME:PALANTIR%20TECHNOLOGIES%20SIGNED_DATE:[2019/01/01,2019/04/08]&sortBy=SIGNED_DATE&desc=Y&start=0&sortBy=SIGNED_DATE",
# "https://www.fpds.gov/ezsearch/FEEDS/ATOM?FEEDNAME=PUBLIC&q=GLOBAL_VENDOR_NAME:PALANTIR%20TECHNOLOGIES%20SIGNED_DATE:[2019/01/01,2019/04/08]&sortBy=SIGNED_DATE&desc=Y&start=10&sortBy=SIGNED_DATE"
# ),
# use_future = F,
# return_message = T
# )
#
# tictoc::tic()
# plan(multisession, gc = T)
# df_ccp_viris <-
# fpds_atom(national_interest_code = "P20C") %>%
# pull(urlFPDSAtom) %>%
# parse_fpds_atom_urls(use_future = T,
# return_message = T)
# tictoc::toc()
#
# df_ccp_viris %>%
# group_by(codeNationalInterestAction) %>%
# summarise(amount = sum(amountObligation)) %>%
# munge_data(snake_names = T)
#
# df_by_day <- df_ccp_viris %>%
# group_by(dateObligation) %>%
# summarise(amount = sum(amountObligation)) %>%
# ungroup() %>%
# mutate(amount_cumulative = cumsum(amount)) %>%
# munge_data(snake_names = T)
# df_ccp_viris %>% save(file = "Desktop/ccp_virus.rda")
#
# df_by_day %>%
# hc_xy(
# x = "date_obligation",
# y = "amount_cumulative",
# type = "area",
# opacity = .5
# )
#
#
# df_ccp_viris %>%
# select(descriptionObligation, amountObligation) %>%
# sheldon::tbl_unnest_tokens(text_column = "descriptionObligation") %>%
# group_by(word) %>%
# summarise(count = n(), amount = sum(amountObligation)) %>%
# hc_xy(
# x = "count",
# y = "amount",
# name = "word",
# point_size = .5,
# point_width = .5,
# transformations = c("log_x", "log_y"),
# label_parameters = list(
# enabled = T,
# useHTML = T,
# format = "{point.name}"
# ),
# )
#
# df_ccp_viris %>%
# group_by(nameVendor, nameVendorLegal, nameVendorParent) %>%
# summarise(amount = sum(amountBaseAllOption),
# count = n(),
# departments = n_distinct(idDepartmentAward)) %>%
# ungroup() %>%
# munge_data() %>%
# filter(is.na(nameVendor))