map_listings.RdThis function returns data from an API that maps the most pertinent matches to a users input.
map_listings(locations = NULL, listing_type = "sale", search_type = "city", city_isolated = NULL, county_isolated = NULL, zipcode_isolated = NULL, state_isolated = NULL, street_isolated = NULL, features = NULL, only_open_houses = NULL, neighborhood_isolated = NULL, beds_min = NULL, beds_max = NULL, baths_min = NULL, baths_max = NULL, price_min = NULL, price_max = NULL, property_type = NULL, sqft_min = NULL, sqft_max = NULL, acre_min = NULL, acre_max = NULL, age_min = NULL, age_max = NULL, days_on_market = NULL, pending = NULL, is_new_construction = NULL, generate_new_cookies = F, include_pending_contingency = TRUE)
| locations | vector of locations |
|---|---|
| listing_type | Listing type
|
| search_type | search type options include
|
| city_isolated | if not |
| county_isolated | if not |
| zipcode_isolated | if not |
| state_isolated | if not |
| street_isolated | if not |
| features | if not |
| only_open_houses | if |
| neighborhood_isolated | if not |
| beds_min | if not |
| beds_max | if not |
| baths_min | if not |
| baths_max | if not |
| price_min | if not |
| price_max | if not |
| property_type | if not |
| sqft_min | if not |
| sqft_max | if not |
| acre_min | if not |
| acre_max | if not |
| age_min | if not |
| age_max | if not |
| days_on_market | if not |
| pending | if |
| is_new_construction | if |
| generate_new_cookies | generate new cookies |
| include_pending_contingency | if |
a tibble
This function is faster than listings
but returns less detailed information.
Other listing search: dictionary_listing_features,
dictionary_property_types,
listing_counts, listings
# NOT RUN { ## New Construction Waterfront actual mapped listings library(dplyr) library(realtR) df_new_water <- map_listings( locations = c("Miami Beach, FL", "Naples, FL"), features = "Waterfront", is_new_construction = TRUE ) df_new_water %>% glimpse() df_new_water %>% group_by(cityProperty, stateProperty, typeProperty) %>% summarise( meanPSF = mean(priceListingPerSF, na.rm = T), meanPrice = mean(priceListing, na.rm = T), countListings = n()) %>% ungroup() # }