Parse vector of listing html listing urls.

html_listing_urls(urls = NULL, include_features = F, sleep_time = 1,
  return_message = TRUE)

Arguments

urls

vector of html listings

include_features

if TRUE includes features

sleep_time

if not NULL sleep time between scrapes

return_message

if TRUE returns message

Details

This function will likely result in DDOS so use carefully. When possible find the JSON api data for the listings.

Examples

html_listing_urls(urls = "https://www.realtor.com/realestateandhomes-detail/5301-Westbard-Cir-Apt-323_Bethesda_MD_20816_M63437-59115")
#> Parsing realestateandhomes-detail/5301-Westbard-Cir-Apt-323_Bethesda_MD_20816_M63437-59115
#> Warning: 1 parsing failure. #> row col expected actual #> 3 -- a number -
#> Warning: 3 parsing failures. #> row col expected actual #> 1 -- a number N/A #> 3 -- a number N/A #> 4 -- a number N/A
#> Warning: 3 parsing failures. #> row col expected actual #> 1 -- a number - #> 3 -- a number - #> 4 -- a number -
#> # A tibble: 1 x 31 #> dateData statusListing typePropertyDet… urlImage dataPhotos countPhotos #> <date> <chr> <chr> <chr> <list> <dbl> #> 1 2019-08-11 Off Market Condo Townhome … https:/… <tibble [… 26 #> # … with 25 more variables: addressProperty <chr>, cityProperty <chr>, #> # stateProperty <chr>, zipcodeProperty <chr>, priceListing <dbl>, #> # nameNeighborhoodProperty <chr>, descriptionText <chr>, #> # areaPropertySF <dbl>, countBaths <dbl>, countBeds <dbl>, #> # sizeLotAcres <dbl>, dataListingHistory <list>, countListings <dbl>, #> # dataComps <list>, countComps <dbl>, dataTaxes <list>, dataSchool <list>, #> # urlListing <chr>, pricePerSFListing <dbl>, hasComps <lgl>, hasTaxes <lgl>, #> # hasPhotos <lgl>, hasSchools <lgl>, hasListingHistory <lgl>, #> # statusListingDetail <chr>