This function returns data from an API that maps the most pertinent matches to a users input.

map_listings(locations = NULL, listing_type = "sale",
  search_type = "city", city_isolated = NULL, county_isolated = NULL,
  zipcode_isolated = NULL, state_isolated = NULL,
  street_isolated = NULL, features = NULL, only_open_houses = NULL,
  neighborhood_isolated = NULL, beds_min = NULL, beds_max = NULL,
  baths_min = NULL, baths_max = NULL, price_min = NULL,
  price_max = NULL, property_type = NULL, sqft_min = NULL,
  sqft_max = NULL, acre_min = NULL, acre_max = NULL,
  age_min = NULL, age_max = NULL, days_on_market = NULL,
  pending = NULL, is_new_construction = NULL,
  generate_new_cookies = F, include_pending_contingency = TRUE)

Arguments

locations

vector of locations

listing_type

Listing type

  • rent

  • sale

search_type

search type options include

  • city - default

  • county

city_isolated

if not NULL isolates

county_isolated

if not NULL isolates county

zipcode_isolated

if not NULL isolates zipcode

state_isolated

if not NULL isolates state

street_isolated

if not NULL isolates street

features

if not NULL list of searchable features see dictionary_listing_features for options

only_open_houses

if TRUE isolates open houses

neighborhood_isolated

if not NULL isolates

beds_min

if not NULL minimum bedrooms

beds_max

if not NULL maximum bedrooms

baths_min

if not NULL minimum bathrooms

baths_max

if not NULL maximum bathrooms

price_min

if not NULL minimum price

price_max

if not NULL maximum price

property_type

if not NULL type of property options see dictionary_property_types for options

sqft_min

if not NULL minimum square footage

sqft_max

if not NULL maximum square footage

acre_min

if not NULL minimum acres

acre_max

if not NULL maximum acres

age_min

if not NULL minimum age

age_max

if not NULL maximum age

days_on_market

if not NULL count of days on market

pending

if TRUE include pending

is_new_construction

if TRUE isolates to new construction

generate_new_cookies

generate new cookies

include_pending_contingency

if TRUE also includes pending and contingent sales

Value

a tibble

Details

This function is faster than listings but returns less detailed information.

See also

Examples

# NOT RUN {
## New Construction Waterfront actual mapped listings
library(dplyr)
library(realtR)
df_new_water <-
 map_listings( locations = c("Miami Beach, FL", "Naples, FL"),
features = "Waterfront", is_new_construction = TRUE )

df_new_water %>%
glimpse()

df_new_water %>%
group_by(cityProperty, stateProperty, typeProperty) %>%
summarise( meanPSF = mean(priceListingPerSF, na.rm = T),
meanPrice = mean(priceListing, na.rm = T), countListings = n()) %>%
ungroup()


# }